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Abstract. We analyze how disease spreads among different age groups
in a stochastic discrete-event simulation of 19 million synthetic individ-
uals representing the residents of southern California. Quantifying the
relative importance of different daily activities of a population is crucial
for understanding disease transmission and guiding mitigation strate-
gies. We use the Los Alamos Epidemic Simulation System (EpiSimS)
to analyze mixing patterns, approximate the probability of transmission
based on the duration of the contact, and estimate a matrix that depicts
who acquired infection from whom (WAIFW). We provide some of the
first quantitative estimates of how infections spread among different age
groups based on the mixing patterns and activities at home, school, and
work. Our results support the hypothesis that schools are the most likely
place for early transmission and that interventions targeting school-aged
children are one of the most effective strategies in fighting an epidemic.
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1 Introduction

The spread of infectious diseases depends upon the contact patterns among
people in the population. Mathematical models predicting the spread of a disease
must accurately account for the mixing patterns within the population. Once the
relationship between the disease spread and the contact structure is understood,
the information can be used to identify activities where the disease is most likely
to be transmitted and to indicate where interventions might be most effective.
The lack of detailed survey data quantifying how people of different ages mix has
been one of the limiting factors for accurately modeling disease transmission.
Although there is limited data available on the contact patterns in the real-
world [9, 18, 22], there are sophisticated computer simulations that incorporate
realistic mixing patterns to match real-world behavior [21]. We analyze the social
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mixing and contact patterns in a synthetic population created by the stochastic
discrete event model, Los Alamos Epidemic Simulation System (EpiSimS) [7, 11,
21]. We then combine these contact patterns with estimates for the susceptibility
and infectiousness of the individuals in the population to better understand the
roles of social mixing in disease spread.

The mathematical foundation has been well developed for epidemic models
where there is strong biased mixing between different age groups. The non-
random mixing formulation include restricted mixing, proportional mixing, pre-
ferred mixing, selective mixing, and non-proportionate mixing [3, 14, 15]. These
non-random mixing models all require knowledge of the existing mixing patterns
in the population. Even though biased mixing epidemic models exist, most com-
mon models do not include a detailed account for the mixing between different
age groups. One reason is that there is little data to quantify how people of
different ages spend time together.

Using age as a metric of mixing is a natural approach since the mixing be-
tween ages is highly biased, the course of the disease is often age dependent, and
the behavior of the population (e.g., work, school, and play) is directly correlated
with age [1]. This paper will provide data for the underlying age-based contact
structure that can be directly incorporated into non-random mixing models.

2 Methodology

Following the approaches developed in Del Valle et al. [6], we used EpiSimS, a
stochastic discrete-event simulation model, to estimate the number and average
duration of daily contacts generated by the population in southern California.
EpiSimS is used to simulate movement, activities, and social interactions of
individuals based on actual data [7,11,21]. The synthetic population for the
virtual world is created with the same demographics as the real population as
determined by the 2000 U.S. Census Data, including: age, household income,
gender, composition of the household, and population density. EpiSimS uses the
National Household Transportation Survey (NHTS) to assign activity patterns
to the population. The social network, which includes the number of contacts
and duration of contacts at each activity, emerges from the simulation.

Disease transmission events can only occur between individuals that occupy
the same room at the same time. Nevertheless, each contact has a weight based
on the duration of the contact, which in turns modifies the probability of trans-
mission. This detail in disease transmission makes EpiSimS more realistic than
macro-scale simulations or other micro-scale simulations where transmission is
instantaneous, rather than time-dependent.

The core of this complex epidemic model is the contact structure of the
population being modeled. It is through this contact structure that the disease
passes from individual to individual and can then be used to predict where
the disease is most likely to be transmitted. Also, the structure can be used to
define the contact mixing patterns in other disease models that do not have the
extensive social contact structured used by EpiSimS.



3 Contact Structure Analysis

We analyzed the population of southern California, which included the counties
of Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura. The
population consists of about 18.8 million, ranging between 0 and 90 years of age
with a median age of 32 and a mean age of 33. A breakdown of the population
reveals that preschoolers (ages 0 to 4) are 8.1%, school-aged children (ages 5 to
18) are 22.8%, adults (ages 19 to 65) are 59.8% while seniors (ages 65 and older)
are the final 9.2% of the population [21]. The distribution of the ages in Figure
1 reveals a bimodal distribution in the data with the highest peak occurring
around the age of 8 and the second, smaller peak, occurring around the age of
35. This bimodal effect may be the results of the increase in population due to
the baby boomers and their offspring.
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Fig. 1. Age Distribution of the synthetic population for southern California. For the
total population of 18,828,569 people, the mean age is 33 while the median age is 32.
There are two peaks that occur, one at about 350,000 for 8 year olds and a second at
325,000 for 35 year olds.

3.1 Total Number of Contacts by Activity

We denote the total number of contacts between age groups, matrix C;;, which
describes the total number of contacts that a person of age ¢ has with a person
of age j. We separated the number of contacts into: 1) children’s contacts at
school and 2) the rest of the population’s contacts, which excludes the contacts
between children at school. Figure 2 shows that the aggregated number of con-
tacts between children is on the order of 1,000,000 (top), while the remaining
contacts is on the order of 10,000 (bottom). The diamonds along the diagonal



on Figure 2 (top) illustrates how children are far more likely to have contacts
with children of their same age.
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Fig. 2. Total number of contacts between different age groups per day. (Top) The
number of contacts at schools are the greatest between students of the same age due
to the grouping of children into classes by age. The largest number of contacts occurs
between teenagers of the same age. (Bottom) The number of contacts at all activities
but excludes the contacts between children at school. This plot shows that in general, as
the age difference increases, the number of contacts decrease. The exception is the weak
coupling between children and adults, probably due to the parent-child relationship.

Figure 2 (top) shows that contacts at school occur most frequently between
children of the same age. This is due to the stratification, or grouping, of the
children into classes at school by age group.

Figure 2 (bottom) shows the number of contacts outside of school. Since
children’s contacts along the diagonal dominate this plot, we removed them
to appreciate the dynamics outside the diagonal. The plot shows that children
have the most contacts with children of similar age and fewer contacts as the
difference between their ages increases. The contacts between middle age adults,
ages 20—60, have a block pattern in that adults tend to have lots of contacts with
adults, with most occurring between adults of the same age. As with contacts
between children, adults tend to have more contacts with adults of the same age
and fewer contacts as the age difference increases. This assortive (like with like)
mixing pattern has been seen by Beutels et al. [5], Del Valle et al. [6], Edmunds
et al. [9], Glasser et al. [12], Hens et al. [13], Mossong et al. [18], Newman and
Girvan [19], and Wallinga et al. [22]. An exception to this is the weak coupling, or
larger number of contacts, that occurs between adults and children, probably due
to parent-child relationships. This pattern of strong diagonal and weak coupling



is consistent with previous studies including Del Valle et al. [6], Glasser et al.
[12], Hen et al. [13], and Mossong et al. [18].

3.2 Average Duration of Contacts by Activity

We denote matrix 7T;;, the average duration of contact per day in hours that a
person of age i had with a person of age j. This matrix is estimated by divid-
ing the total duration of all contacts by the total number of contacts, matrix
C;;. Figure 3 confirms that children have the longest contacts with other chil-
dren their own age, while adults have, on average, shorter contacts over a much
broader age range.

Fig. 3. Average duration of contacts per day in hours. (Top) The average duration of
contacts at home shows a large variation with age. The average duration of contacts
between preschoolers (ages 0 —4) is about 10 hours per day while between older adults
(ages 80 — 90) it is only about 5.5 hours per day. (Bottom) The average duration of
contacts at all activities shows the longest contact durations occurs between children
(ages 18 and under) with as much as 9 hours per day, followed by the duration between
children and adults (ages 20 — 60) at around 6 hours, and finally the duration between
adults (ages 20 — 60) at about 5 hours per day.

Figure 3 (top) shows that the average duration of contacts at home vary
widely with age. Contacts between preschoolers (ages 0 - 4) are the longest
with the average duration being around 10 hours. The shortest average contact
durations occur between 80 - 90 year olds with an average of 5.5 hours. This
may be due to the fact that more older people live alone.

Figure 3 (bottom) shows the average duration of contacts at all the activities
combined. Note that the average contact duration between children (ages 18 and
under) are the longest. As seen in the total number of contacts between adults,



we see a block for adults (ages 20 - 60) with an average contact duration of
around 5 hours. This is probably from contacts between people at work or from
spouses in the same household. We observe a weak coupling between children
and adults with an average contact duration of around 6 hours, probably due to
the parent-child relationship.

3.3 Probability of Transmission by Activity

The probability of transmission, matrix P;;, is based on the duration of contacts
between a susceptible in age group 7 and an infected in age group j. This paper
uses the same approach as in [6] where P;; = 1 — e °Ti and o is the mean
number of transmission events per hour of contact between fully susceptible and
fully infectious people. To allow direct comparison with [6], ¢ = 0.2 is used.
Since this is a Poisson probability distribution with parameter ot, the longer the
contact, the greater the probability of transmission.

In the top plot of Figure 4, we show the probability of transmission at home.
The probability of transmission between preschoolers (ages 0 - 4) is the highest
at around 0.9 and is due to the long duration of their contacts. Between adults,
the probability of transmission tends to decrease with increasing age.
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Fig. 4. Probability of Transmission (Top) At home, the highest probability of trans-
mission occurs between preschoolers (ages 0 - 4) at 0.9 and is lowest between seniors
(ages 80 - 90) at around 0.65. (Bottom) At all activities, the highest probability of
transmission occurs between preschoolers (ages 0 - 4) at around 0.8. The probability
of transmission between school-aged children (ages 5 - 18) is about 0.7 as is the proba-
bility of transmission between adults (ages 20 - 50) and children, probably due to the
parent-child relationship. The probability of transmission between adults (ages 20 - 65)
is about 0.6.



In the bottom plot of Figure 4, we show the probability of transmission
at all activities, which reveals two blocks and a weak coupling. For the weak
coupling between children and adults, there is a probability of about 0.7. The
block for adults (ages 20 - 65) has a probability of transmission of around 0.6.
For the block with children, transmissions between school-aged children have
a probability of 0.7, while preschoolers have a probability of about 0.8. This
is consistent with researchers including Longini et al. [16] and Mikolajczyk et
al. [17], which concluded that vaccination of children is an effective mitigation
technique in controlling the spread of an infection.

3.4 'Who Acquired Infection From Whom by Activity

The transmission matrix, also known as the who acquired infection from whom
(WAIFW) matrix, represents the rate 3;; at which a susceptible person from age i
will be infected by an infectious person from age j. The formula for calculating 3;;
is vi; X a; X ;i X Pi;, where «;; is the average number of contacts per day (which
can be calculated by dividing C;; over N;, where N; is the total population), «; is
the susceptibility, £, is the infectivity, and P;; is the probability of transmission
matrix (see Probability of Transmission by Activity section). In order to simplify
the calculations and in keeping with [6], we will assume that c; and &, are both
1.

Figure 5 (top left) shows the transmission rates at home. The highest trans-
mission rate occurs between children of differing ages. This is probably due to
transmission between siblings, who tend to be of different ages. There is also a
high transmission rate among adults of a similar age, probably due to spouses
of a similar age. Finally, there is a high transmission rate between children and
adults.

Figure 5 (top right) shows the transmission rates at school. Transmission
rates among children of the same age are by far the largest. This is due to the
stratification in EpiSimS placing children of the same age in the same classroom
at school. The implication of this finding is that the largest transmission rates
occur between teenagers.

Figure 5 (bottom left) illustrates the transmission rates for shopping. This
plot shows highly non-symmetrical transmissions. The largest transmission rate
is from middle age adults (ages 20 - 60) to older adults (ages 70 - 90). This is
probably because older adults have fewer contacts at home and are more likely
to be exposed to disease while shopping.

Figure 5 (bottom right) shows the transmission rates at work. Adults have
the highest transmission rate at work. This high rate for adults (ages 20 - 60) is
expected since most workers are in this age range.

Figure 6 shows a block between adults and the weak coupling between chil-
dren and adults. In this plot, the transmission rates between children have been
removed because the transmission rate between children is dominated by school
(see Figure 5) and are significantly larger than transmission rates between any
other group. For the adults, the transmission rate of about 0.2 is highest among



adults of the same age and decreases with increasing age differences. The excep-
tion is where the weak coupling occurs and there is a transmission rate of about
0.1 both from adults to children and from children to adults.
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Fig. 5. Transmission Matrix (WAIFW) (Top left) At home, the highest transmission
rates are between children of different ages, probably siblings, followed by transmission
between adults and children, and finally between adults of similar ages. (Top right)
At school, the largest transmission rates are among students of the same age, with
teenagers being the largest. Notice these rates are significantly higher than at home,
work, and shops. (Bottom left) At shops, the highest transmission rates are from
middle age adults (20 - 60) to older adults (ages 70 - 90) though this rate is much
lower than the transmission rates at home or work. (Bottom right) At work, the
highest transmission rates are between adults (ages 20 - 60) which should be expected
because they compromise the majority of the work force. Even the highest transmission
rates at work are lower than the rates at school but still higher than at shops.

Table 1 shows the aggregated daily transmission rates for the following ages
groups: 0 - 4, 5 - 12, 13 - 19, 20 - 29, 30 - 39, 40 - 49, 50 - 59, 60 - 69 and
70 - 90. This is an aggregation of the 3;; transmission matrix in Figure 6. For
the aggregated transmission rates for home and school see Table 2 and Table 3,
respectively.

3.5 Infections by Activity

Table 4 shows the probability of being infected at different activities. Infected
children were most likely infected at school, followed by home, and then social
recreation, or shopping. Infected adults are most likely to have become infected
at home, followed by work and then social recreation, or shopping. Edmunds et
al. [10] speculated that the risk of infection is probably greater at home than



Fig. 6. Transmission Matrix (WAIFW) Total. The transmission rates of children at
school dominate, so they have been removed from this plot. The transmission rates are
high between children and adults (both from children to adults and adults to children)
though the highest rates are between adults (ages 20 - 55) of a similar age.

Table 1. Transmission matrix (WAIFW) of the daily number of adequate contacts per
person between the aggregated age groups at all activities. The highest transmission
rates are between teenagers (ages 13 - 19).

Age | 0-4 |5-12]13-19|20-29|30-39|40-49|50-59|60-69|70-90
0-4 |0.602|0.083| 0.042 | 0.057 | 0.069 | 0.030 | 0.013 | 0.006 | 0.002
5-12(0.077]0.744| 0.072 | 0.046 | 0.091 | 0.059 | 0.019 | 0.009 | 0.003
13-19|0.046|0.083| 0.913 | 0.057 | 0.082 | 0.107 | 0.041 | 0.015 | 0.005
20-29(0.064]0.055/ 0.058 | 0.176 | 0.151 | 0.146 | 0.099 | 0.039 | 0.011
30-39|0.069(0.096| 0.072 [ 0.131 | 0.173 | 0.135 | 0.087 | 0.039 | 0.011
40-49|0.033|0.068] 0.106 | 0.143 | 0.153 | 0.174 | 0.098 | 0.040 | 0.013
50-59(0.021]0.034| 0.059 | 0.143 | 0.146 | 0.143 | 0.123 | 0.045 | 0.013
60-69|0.017|0.026] 0.035 | 0.091 | 0.103 | 0.095 | 0.070 | 0.050 | 0.013
70-90|0.010{0.015| 0.021 | 0.042 | 0.048 | 0.049 | 0.036 | 0.022 | 0.013

Table 2. Transmission matrix (WAIFW) of the daily number of adequate contacts per
person between the aggregated age groups at home. The highest transmission rate is
between children (ages 5 - 12).

Age | 0-4 |5-12|13-19|20-29|30-39|40-49|50-59|60-69|70-90
0-4 |0.063|0.072| 0.028 | 0.045 | 0.056 | 0.018 | 0.006 | 0.003 | 0.001
5-12(0.067]0.086| 0.050 | 0.031 | 0.073 | 0.043 | 0.010 | 0.004 | 0.000
13-19/0.030(0.057| 0.067 | 0.023 | 0.041 | 0.063 | 0.017 | 0.004 | 0.002
20-29|0.051]0.038| 0.024 | 0.056 | 0.019 | 0.021 | 0.016 | 0.004 | 0.001
30-39|0.056{0.078] 0.037 | 0.017 | 0.043 | 0.014 | 0.006 | 0.005 | 0.001
40-49|0.020{0.049] 0.064 | 0.021 | 0.015 | 0.042 | 0.011 | 0.004 | 0.002
50-59|0.009(0.017| 0.024 | 0.022 | 0.010 | 0.014 | 0.036 | 0.008 | 0.002
60-69|0.007|0.011} 0.010 | 0.010 | 0.012 | 0.009 | 0.012 | 0.022 | 0.004
70-90|0.003]0.000( 0.006 | 0.004 | 0.005 | 0.008 | 0.007 | 0.006 | 0.006




Table 3. Transmission matrix (WAIFW) of the daily number of adequate contacts per
person between the aggregated age groups at school. The highest transmission rate is
between children (ages 5 - 12). Notice the transmission rates at school are much higher
than at home for children.

Age | 0-4 |5-12|13-19|20-29|30-39|40-49|50-59|60-69|70-90
0-4 |0.531]0.000( 0.000 | 0.002 | 0.002 | 0.002 | 0.001 | 0.001 | 0.000
5-12|0.000{0.641| 0.001 | 0.004 | 0.005 | 0.005 | 0.003 | 0.001 | 0.000
13-19/0.000(0.000{ 0.618 | 0.004 | 0.005 | 0.005 | 0.003 | 0.001 | 0.000

at work. We would expect to see a smaller number of senior adults becoming
affected at work but this may be a result of using the household transportation
data along with a biased smaller data set towards the working population.

Table 4. If infected, where were you most likely infected? Children ages 19 and under
are most likely to have become infected at school followed by home. Adults were most
likely to have become infected at home followed by work.

Age |Home|School/Work| Social Recreation / Shop
0-4 |37.95% 48.19% 13.85%
5-12(37.69% 48.95% 13.36%

13 - 19(38.73% 46.73% 14.53%

20 - 29(46.56% 36.00% 17.44%

30 - 39(46.40% 36.55% 17.05%

40 - 49|46.09% 36.59% 17.32%

50 - 59(45.60% 36.50% 17.90%

60 - 69(45.48% 35.83% 18.68%

70 - 90(45.62% 35.18% 19.21%

4 Summary, Discussion, and Conclusions

Using data from EpiSimS, we found the average number of contacts per day
followed by the probability of transmission based on the duration of the contact.
From the probability of transmission data, the WAIFW matrix was calculated.
The WAIFW matrices may be used in deterministic models that stratify the
transmission rates by age. We estimated these matrices for all activities com-
bined as well as broken down by activity (home, school, shopping, and work) for
southern California. When analyzing all activities combined, we see two blocks
occurring in the matrices, one between adults and one between children, as well
as the weak coupling between children and adults, probably due to the parent-
child relationship.

Finally, we were able to show which activities are more likely to generate
secondary infections. For adults, the activity with the highest probability is home



followed by work. For children, the activity with the highest probability is school
followed by home. Therefore, mitigation techniques targeting children at schools
could help halt the spread of disease [8]. This is consistent with researchers having
found that mass vaccination would not be necessary [4]. Researchers have also
found that vaccinating 80% of children is almost as effective as vaccinating 80%
of the population [16].

If the models predictions are used to guide public health policy, models should
account for the contact patterns of a population and consider the impact of be-
havioral changes. Our goal has been to provide estimates for the contact patterns
of a synthetic population. Our hope is that these patterns can increase our un-
derstanding of the spread of emerging and re-emerging infectious diseases. Only
after the normal contact patterns have been accurately modeled, can the simu-
lations predict the impact of behavioral changes on the spread of a pathogen.

These high-fidelity models based on the structure of interactions among indi-
viduals can then investigate the effectiveness of different behavior changes, from
reducing specific types of contacts to reducing susceptibility and infectiousness
though hand washing, wearing protective masks, avoiding crowded places, and
school closures. Biased mixing patterns reduce the spread of disease. Without
accurate mixing patterns, mathematical models run the risk of overestimating
the spread of an epidemic.
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